libstdc++
|
00001 // Deque implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2019 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_deque.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{deque} 00054 */ 00055 00056 #ifndef _STL_DEQUE_H 00057 #define _STL_DEQUE_H 1 00058 00059 #include <bits/concept_check.h> 00060 #include <bits/stl_iterator_base_types.h> 00061 #include <bits/stl_iterator_base_funcs.h> 00062 #if __cplusplus >= 201103L 00063 #include <initializer_list> 00064 #include <bits/stl_uninitialized.h> // for __is_bitwise_relocatable 00065 #endif 00066 00067 #include <debug/assertions.h> 00068 00069 namespace std _GLIBCXX_VISIBILITY(default) 00070 { 00071 _GLIBCXX_BEGIN_NAMESPACE_VERSION 00072 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00073 00074 /** 00075 * @brief This function controls the size of memory nodes. 00076 * @param __size The size of an element. 00077 * @return The number (not byte size) of elements per node. 00078 * 00079 * This function started off as a compiler kludge from SGI, but 00080 * seems to be a useful wrapper around a repeated constant 00081 * expression. The @b 512 is tunable (and no other code needs to 00082 * change), but no investigation has been done since inheriting the 00083 * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what 00084 * you are doing, however: changing it breaks the binary 00085 * compatibility!! 00086 */ 00087 00088 #ifndef _GLIBCXX_DEQUE_BUF_SIZE 00089 #define _GLIBCXX_DEQUE_BUF_SIZE 512 00090 #endif 00091 00092 _GLIBCXX_CONSTEXPR inline size_t 00093 __deque_buf_size(size_t __size) 00094 { return (__size < _GLIBCXX_DEQUE_BUF_SIZE 00095 ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); } 00096 00097 00098 /** 00099 * @brief A deque::iterator. 00100 * 00101 * Quite a bit of intelligence here. Much of the functionality of 00102 * deque is actually passed off to this class. A deque holds two 00103 * of these internally, marking its valid range. Access to 00104 * elements is done as offsets of either of those two, relying on 00105 * operator overloading in this class. 00106 * 00107 * All the functions are op overloads except for _M_set_node. 00108 */ 00109 template<typename _Tp, typename _Ref, typename _Ptr> 00110 struct _Deque_iterator 00111 { 00112 #if __cplusplus < 201103L 00113 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; 00114 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; 00115 typedef _Tp* _Elt_pointer; 00116 typedef _Tp** _Map_pointer; 00117 #else 00118 private: 00119 template<typename _Up> 00120 using __ptr_to = typename pointer_traits<_Ptr>::template rebind<_Up>; 00121 template<typename _CvTp> 00122 using __iter = _Deque_iterator<_Tp, _CvTp&, __ptr_to<_CvTp>>; 00123 public: 00124 typedef __iter<_Tp> iterator; 00125 typedef __iter<const _Tp> const_iterator; 00126 typedef __ptr_to<_Tp> _Elt_pointer; 00127 typedef __ptr_to<_Elt_pointer> _Map_pointer; 00128 #endif 00129 00130 static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT 00131 { return __deque_buf_size(sizeof(_Tp)); } 00132 00133 typedef std::random_access_iterator_tag iterator_category; 00134 typedef _Tp value_type; 00135 typedef _Ptr pointer; 00136 typedef _Ref reference; 00137 typedef size_t size_type; 00138 typedef ptrdiff_t difference_type; 00139 typedef _Deque_iterator _Self; 00140 00141 _Elt_pointer _M_cur; 00142 _Elt_pointer _M_first; 00143 _Elt_pointer _M_last; 00144 _Map_pointer _M_node; 00145 00146 _Deque_iterator(_Elt_pointer __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT 00147 : _M_cur(__x), _M_first(*__y), 00148 _M_last(*__y + _S_buffer_size()), _M_node(__y) { } 00149 00150 _Deque_iterator() _GLIBCXX_NOEXCEPT 00151 : _M_cur(), _M_first(), _M_last(), _M_node() { } 00152 00153 #if __cplusplus < 201103L 00154 // Conversion from iterator to const_iterator. 00155 _Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT 00156 : _M_cur(__x._M_cur), _M_first(__x._M_first), 00157 _M_last(__x._M_last), _M_node(__x._M_node) { } 00158 #else 00159 // Conversion from iterator to const_iterator. 00160 template<typename _Iter, 00161 typename = _Require<is_same<_Self, const_iterator>, 00162 is_same<_Iter, iterator>>> 00163 _Deque_iterator(const _Iter& __x) noexcept 00164 : _M_cur(__x._M_cur), _M_first(__x._M_first), 00165 _M_last(__x._M_last), _M_node(__x._M_node) { } 00166 00167 _Deque_iterator(const _Deque_iterator&) = default; 00168 _Deque_iterator& operator=(const _Deque_iterator&) = default; 00169 #endif 00170 00171 iterator 00172 _M_const_cast() const _GLIBCXX_NOEXCEPT 00173 { return iterator(_M_cur, _M_node); } 00174 00175 reference 00176 operator*() const _GLIBCXX_NOEXCEPT 00177 { return *_M_cur; } 00178 00179 pointer 00180 operator->() const _GLIBCXX_NOEXCEPT 00181 { return _M_cur; } 00182 00183 _Self& 00184 operator++() _GLIBCXX_NOEXCEPT 00185 { 00186 ++_M_cur; 00187 if (_M_cur == _M_last) 00188 { 00189 _M_set_node(_M_node + 1); 00190 _M_cur = _M_first; 00191 } 00192 return *this; 00193 } 00194 00195 _Self 00196 operator++(int) _GLIBCXX_NOEXCEPT 00197 { 00198 _Self __tmp = *this; 00199 ++*this; 00200 return __tmp; 00201 } 00202 00203 _Self& 00204 operator--() _GLIBCXX_NOEXCEPT 00205 { 00206 if (_M_cur == _M_first) 00207 { 00208 _M_set_node(_M_node - 1); 00209 _M_cur = _M_last; 00210 } 00211 --_M_cur; 00212 return *this; 00213 } 00214 00215 _Self 00216 operator--(int) _GLIBCXX_NOEXCEPT 00217 { 00218 _Self __tmp = *this; 00219 --*this; 00220 return __tmp; 00221 } 00222 00223 _Self& 00224 operator+=(difference_type __n) _GLIBCXX_NOEXCEPT 00225 { 00226 const difference_type __offset = __n + (_M_cur - _M_first); 00227 if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) 00228 _M_cur += __n; 00229 else 00230 { 00231 const difference_type __node_offset = 00232 __offset > 0 ? __offset / difference_type(_S_buffer_size()) 00233 : -difference_type((-__offset - 1) 00234 / _S_buffer_size()) - 1; 00235 _M_set_node(_M_node + __node_offset); 00236 _M_cur = _M_first + (__offset - __node_offset 00237 * difference_type(_S_buffer_size())); 00238 } 00239 return *this; 00240 } 00241 00242 _Self 00243 operator+(difference_type __n) const _GLIBCXX_NOEXCEPT 00244 { 00245 _Self __tmp = *this; 00246 return __tmp += __n; 00247 } 00248 00249 _Self& 00250 operator-=(difference_type __n) _GLIBCXX_NOEXCEPT 00251 { return *this += -__n; } 00252 00253 _Self 00254 operator-(difference_type __n) const _GLIBCXX_NOEXCEPT 00255 { 00256 _Self __tmp = *this; 00257 return __tmp -= __n; 00258 } 00259 00260 reference 00261 operator[](difference_type __n) const _GLIBCXX_NOEXCEPT 00262 { return *(*this + __n); } 00263 00264 /** 00265 * Prepares to traverse new_node. Sets everything except 00266 * _M_cur, which should therefore be set by the caller 00267 * immediately afterwards, based on _M_first and _M_last. 00268 */ 00269 void 00270 _M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT 00271 { 00272 _M_node = __new_node; 00273 _M_first = *__new_node; 00274 _M_last = _M_first + difference_type(_S_buffer_size()); 00275 } 00276 }; 00277 00278 // Note: we also provide overloads whose operands are of the same type in 00279 // order to avoid ambiguous overload resolution when std::rel_ops operators 00280 // are in scope (for additional details, see libstdc++/3628) 00281 template<typename _Tp, typename _Ref, typename _Ptr> 00282 inline bool 00283 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00284 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00285 { return __x._M_cur == __y._M_cur; } 00286 00287 template<typename _Tp, typename _RefL, typename _PtrL, 00288 typename _RefR, typename _PtrR> 00289 inline bool 00290 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00291 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00292 { return __x._M_cur == __y._M_cur; } 00293 00294 template<typename _Tp, typename _Ref, typename _Ptr> 00295 inline bool 00296 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00297 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00298 { return !(__x == __y); } 00299 00300 template<typename _Tp, typename _RefL, typename _PtrL, 00301 typename _RefR, typename _PtrR> 00302 inline bool 00303 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00304 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00305 { return !(__x == __y); } 00306 00307 template<typename _Tp, typename _Ref, typename _Ptr> 00308 inline bool 00309 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00310 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00311 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00312 : (__x._M_node < __y._M_node); } 00313 00314 template<typename _Tp, typename _RefL, typename _PtrL, 00315 typename _RefR, typename _PtrR> 00316 inline bool 00317 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00318 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00319 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00320 : (__x._M_node < __y._M_node); } 00321 00322 template<typename _Tp, typename _Ref, typename _Ptr> 00323 inline bool 00324 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00325 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00326 { return __y < __x; } 00327 00328 template<typename _Tp, typename _RefL, typename _PtrL, 00329 typename _RefR, typename _PtrR> 00330 inline bool 00331 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00332 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00333 { return __y < __x; } 00334 00335 template<typename _Tp, typename _Ref, typename _Ptr> 00336 inline bool 00337 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00338 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00339 { return !(__y < __x); } 00340 00341 template<typename _Tp, typename _RefL, typename _PtrL, 00342 typename _RefR, typename _PtrR> 00343 inline bool 00344 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00345 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00346 { return !(__y < __x); } 00347 00348 template<typename _Tp, typename _Ref, typename _Ptr> 00349 inline bool 00350 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00351 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00352 { return !(__x < __y); } 00353 00354 template<typename _Tp, typename _RefL, typename _PtrL, 00355 typename _RefR, typename _PtrR> 00356 inline bool 00357 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00358 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00359 { return !(__x < __y); } 00360 00361 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00362 // According to the resolution of DR179 not only the various comparison 00363 // operators but also operator- must accept mixed iterator/const_iterator 00364 // parameters. 00365 template<typename _Tp, typename _Ref, typename _Ptr> 00366 inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type 00367 operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00368 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00369 { 00370 return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type 00371 (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size()) 00372 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00373 + (__y._M_last - __y._M_cur); 00374 } 00375 00376 template<typename _Tp, typename _RefL, typename _PtrL, 00377 typename _RefR, typename _PtrR> 00378 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00379 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00380 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00381 { 00382 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00383 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) 00384 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00385 + (__y._M_last - __y._M_cur); 00386 } 00387 00388 template<typename _Tp, typename _Ref, typename _Ptr> 00389 inline _Deque_iterator<_Tp, _Ref, _Ptr> 00390 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) 00391 _GLIBCXX_NOEXCEPT 00392 { return __x + __n; } 00393 00394 template<typename _Tp> 00395 void 00396 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&, 00397 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&); 00398 00399 template<typename _Tp> 00400 _Deque_iterator<_Tp, _Tp&, _Tp*> 00401 copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00402 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00403 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00404 00405 template<typename _Tp> 00406 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00407 copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00408 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00409 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00410 { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), 00411 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), 00412 __result); } 00413 00414 template<typename _Tp> 00415 _Deque_iterator<_Tp, _Tp&, _Tp*> 00416 copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00417 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00418 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00419 00420 template<typename _Tp> 00421 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00422 copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00423 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00424 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00425 { return std::copy_backward(_Deque_iterator<_Tp, 00426 const _Tp&, const _Tp*>(__first), 00427 _Deque_iterator<_Tp, 00428 const _Tp&, const _Tp*>(__last), 00429 __result); } 00430 00431 #if __cplusplus >= 201103L 00432 template<typename _Tp> 00433 _Deque_iterator<_Tp, _Tp&, _Tp*> 00434 move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00435 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00436 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00437 00438 template<typename _Tp> 00439 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00440 move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00441 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00442 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00443 { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), 00444 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), 00445 __result); } 00446 00447 template<typename _Tp> 00448 _Deque_iterator<_Tp, _Tp&, _Tp*> 00449 move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00450 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00451 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00452 00453 template<typename _Tp> 00454 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00455 move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00456 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00457 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00458 { return std::move_backward(_Deque_iterator<_Tp, 00459 const _Tp&, const _Tp*>(__first), 00460 _Deque_iterator<_Tp, 00461 const _Tp&, const _Tp*>(__last), 00462 __result); } 00463 #endif 00464 00465 /** 00466 * Deque base class. This class provides the unified face for %deque's 00467 * allocation. This class's constructor and destructor allocate and 00468 * deallocate (but do not initialize) storage. This makes %exception 00469 * safety easier. 00470 * 00471 * Nothing in this class ever constructs or destroys an actual Tp element. 00472 * (Deque handles that itself.) Only/All memory management is performed 00473 * here. 00474 */ 00475 template<typename _Tp, typename _Alloc> 00476 class _Deque_base 00477 { 00478 protected: 00479 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 00480 rebind<_Tp>::other _Tp_alloc_type; 00481 typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Alloc_traits; 00482 00483 #if __cplusplus < 201103L 00484 typedef _Tp* _Ptr; 00485 typedef const _Tp* _Ptr_const; 00486 #else 00487 typedef typename _Alloc_traits::pointer _Ptr; 00488 typedef typename _Alloc_traits::const_pointer _Ptr_const; 00489 #endif 00490 00491 typedef typename _Alloc_traits::template rebind<_Ptr>::other 00492 _Map_alloc_type; 00493 typedef __gnu_cxx::__alloc_traits<_Map_alloc_type> _Map_alloc_traits; 00494 00495 public: 00496 typedef _Alloc allocator_type; 00497 00498 allocator_type 00499 get_allocator() const _GLIBCXX_NOEXCEPT 00500 { return allocator_type(_M_get_Tp_allocator()); } 00501 00502 typedef _Deque_iterator<_Tp, _Tp&, _Ptr> iterator; 00503 typedef _Deque_iterator<_Tp, const _Tp&, _Ptr_const> const_iterator; 00504 00505 _Deque_base() 00506 : _M_impl() 00507 { _M_initialize_map(0); } 00508 00509 _Deque_base(size_t __num_elements) 00510 : _M_impl() 00511 { _M_initialize_map(__num_elements); } 00512 00513 _Deque_base(const allocator_type& __a, size_t __num_elements) 00514 : _M_impl(__a) 00515 { _M_initialize_map(__num_elements); } 00516 00517 _Deque_base(const allocator_type& __a) 00518 : _M_impl(__a) 00519 { /* Caller must initialize map. */ } 00520 00521 #if __cplusplus >= 201103L 00522 _Deque_base(_Deque_base&& __x, false_type) 00523 : _M_impl(__x._M_move_impl()) 00524 { } 00525 00526 _Deque_base(_Deque_base&& __x, true_type) 00527 : _M_impl(std::move(__x._M_get_Tp_allocator())) 00528 { 00529 _M_initialize_map(0); 00530 if (__x._M_impl._M_map) 00531 this->_M_impl._M_swap_data(__x._M_impl); 00532 } 00533 00534 _Deque_base(_Deque_base&& __x) 00535 : _Deque_base(std::move(__x), typename _Alloc_traits::is_always_equal{}) 00536 { } 00537 00538 _Deque_base(_Deque_base&& __x, const allocator_type& __a, size_t __n) 00539 : _M_impl(__a) 00540 { 00541 if (__x.get_allocator() == __a) 00542 { 00543 if (__x._M_impl._M_map) 00544 { 00545 _M_initialize_map(0); 00546 this->_M_impl._M_swap_data(__x._M_impl); 00547 } 00548 } 00549 else 00550 { 00551 _M_initialize_map(__n); 00552 } 00553 } 00554 #endif 00555 00556 ~_Deque_base() _GLIBCXX_NOEXCEPT; 00557 00558 protected: 00559 typedef typename iterator::_Map_pointer _Map_pointer; 00560 00561 //This struct encapsulates the implementation of the std::deque 00562 //standard container and at the same time makes use of the EBO 00563 //for empty allocators. 00564 struct _Deque_impl 00565 : public _Tp_alloc_type 00566 { 00567 _Map_pointer _M_map; 00568 size_t _M_map_size; 00569 iterator _M_start; 00570 iterator _M_finish; 00571 00572 _Deque_impl() 00573 : _Tp_alloc_type(), _M_map(), _M_map_size(0), 00574 _M_start(), _M_finish() 00575 { } 00576 00577 _Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT 00578 : _Tp_alloc_type(__a), _M_map(), _M_map_size(0), 00579 _M_start(), _M_finish() 00580 { } 00581 00582 #if __cplusplus >= 201103L 00583 _Deque_impl(_Deque_impl&&) = default; 00584 00585 _Deque_impl(_Tp_alloc_type&& __a) noexcept 00586 : _Tp_alloc_type(std::move(__a)), _M_map(), _M_map_size(0), 00587 _M_start(), _M_finish() 00588 { } 00589 #endif 00590 00591 void _M_swap_data(_Deque_impl& __x) _GLIBCXX_NOEXCEPT 00592 { 00593 using std::swap; 00594 swap(this->_M_start, __x._M_start); 00595 swap(this->_M_finish, __x._M_finish); 00596 swap(this->_M_map, __x._M_map); 00597 swap(this->_M_map_size, __x._M_map_size); 00598 } 00599 }; 00600 00601 _Tp_alloc_type& 00602 _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT 00603 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); } 00604 00605 const _Tp_alloc_type& 00606 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT 00607 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); } 00608 00609 _Map_alloc_type 00610 _M_get_map_allocator() const _GLIBCXX_NOEXCEPT 00611 { return _Map_alloc_type(_M_get_Tp_allocator()); } 00612 00613 _Ptr 00614 _M_allocate_node() 00615 { 00616 typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits; 00617 return _Traits::allocate(_M_impl, __deque_buf_size(sizeof(_Tp))); 00618 } 00619 00620 void 00621 _M_deallocate_node(_Ptr __p) _GLIBCXX_NOEXCEPT 00622 { 00623 typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits; 00624 _Traits::deallocate(_M_impl, __p, __deque_buf_size(sizeof(_Tp))); 00625 } 00626 00627 _Map_pointer 00628 _M_allocate_map(size_t __n) 00629 { 00630 _Map_alloc_type __map_alloc = _M_get_map_allocator(); 00631 return _Map_alloc_traits::allocate(__map_alloc, __n); 00632 } 00633 00634 void 00635 _M_deallocate_map(_Map_pointer __p, size_t __n) _GLIBCXX_NOEXCEPT 00636 { 00637 _Map_alloc_type __map_alloc = _M_get_map_allocator(); 00638 _Map_alloc_traits::deallocate(__map_alloc, __p, __n); 00639 } 00640 00641 protected: 00642 void _M_initialize_map(size_t); 00643 void _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish); 00644 void _M_destroy_nodes(_Map_pointer __nstart, 00645 _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT; 00646 enum { _S_initial_map_size = 8 }; 00647 00648 _Deque_impl _M_impl; 00649 00650 #if __cplusplus >= 201103L 00651 private: 00652 _Deque_impl 00653 _M_move_impl() 00654 { 00655 if (!_M_impl._M_map) 00656 return std::move(_M_impl); 00657 00658 // Create a copy of the current allocator. 00659 _Tp_alloc_type __alloc{_M_get_Tp_allocator()}; 00660 // Put that copy in a moved-from state. 00661 _Tp_alloc_type __sink __attribute((__unused__)) {std::move(__alloc)}; 00662 // Create an empty map that allocates using the moved-from allocator. 00663 _Deque_base __empty{__alloc}; 00664 __empty._M_initialize_map(0); 00665 // Now safe to modify current allocator and perform non-throwing swaps. 00666 _Deque_impl __ret{std::move(_M_get_Tp_allocator())}; 00667 _M_impl._M_swap_data(__ret); 00668 _M_impl._M_swap_data(__empty._M_impl); 00669 return __ret; 00670 } 00671 #endif 00672 }; 00673 00674 template<typename _Tp, typename _Alloc> 00675 _Deque_base<_Tp, _Alloc>:: 00676 ~_Deque_base() _GLIBCXX_NOEXCEPT 00677 { 00678 if (this->_M_impl._M_map) 00679 { 00680 _M_destroy_nodes(this->_M_impl._M_start._M_node, 00681 this->_M_impl._M_finish._M_node + 1); 00682 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00683 } 00684 } 00685 00686 /** 00687 * @brief Layout storage. 00688 * @param __num_elements The count of T's for which to allocate space 00689 * at first. 00690 * @return Nothing. 00691 * 00692 * The initial underlying memory layout is a bit complicated... 00693 */ 00694 template<typename _Tp, typename _Alloc> 00695 void 00696 _Deque_base<_Tp, _Alloc>:: 00697 _M_initialize_map(size_t __num_elements) 00698 { 00699 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp)) 00700 + 1); 00701 00702 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size, 00703 size_t(__num_nodes + 2)); 00704 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size); 00705 00706 // For "small" maps (needing less than _M_map_size nodes), allocation 00707 // starts in the middle elements and grows outwards. So nstart may be 00708 // the beginning of _M_map, but for small maps it may be as far in as 00709 // _M_map+3. 00710 00711 _Map_pointer __nstart = (this->_M_impl._M_map 00712 + (this->_M_impl._M_map_size - __num_nodes) / 2); 00713 _Map_pointer __nfinish = __nstart + __num_nodes; 00714 00715 __try 00716 { _M_create_nodes(__nstart, __nfinish); } 00717 __catch(...) 00718 { 00719 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00720 this->_M_impl._M_map = _Map_pointer(); 00721 this->_M_impl._M_map_size = 0; 00722 __throw_exception_again; 00723 } 00724 00725 this->_M_impl._M_start._M_set_node(__nstart); 00726 this->_M_impl._M_finish._M_set_node(__nfinish - 1); 00727 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first; 00728 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first 00729 + __num_elements 00730 % __deque_buf_size(sizeof(_Tp))); 00731 } 00732 00733 template<typename _Tp, typename _Alloc> 00734 void 00735 _Deque_base<_Tp, _Alloc>:: 00736 _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish) 00737 { 00738 _Map_pointer __cur; 00739 __try 00740 { 00741 for (__cur = __nstart; __cur < __nfinish; ++__cur) 00742 *__cur = this->_M_allocate_node(); 00743 } 00744 __catch(...) 00745 { 00746 _M_destroy_nodes(__nstart, __cur); 00747 __throw_exception_again; 00748 } 00749 } 00750 00751 template<typename _Tp, typename _Alloc> 00752 void 00753 _Deque_base<_Tp, _Alloc>:: 00754 _M_destroy_nodes(_Map_pointer __nstart, 00755 _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT 00756 { 00757 for (_Map_pointer __n = __nstart; __n < __nfinish; ++__n) 00758 _M_deallocate_node(*__n); 00759 } 00760 00761 /** 00762 * @brief A standard container using fixed-size memory allocation and 00763 * constant-time manipulation of elements at either end. 00764 * 00765 * @ingroup sequences 00766 * 00767 * @tparam _Tp Type of element. 00768 * @tparam _Alloc Allocator type, defaults to allocator<_Tp>. 00769 * 00770 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00771 * <a href="tables.html#66">reversible container</a>, and a 00772 * <a href="tables.html#67">sequence</a>, including the 00773 * <a href="tables.html#68">optional sequence requirements</a>. 00774 * 00775 * In previous HP/SGI versions of deque, there was an extra template 00776 * parameter so users could control the node size. This extension turned 00777 * out to violate the C++ standard (it can be detected using template 00778 * template parameters), and it was removed. 00779 * 00780 * Here's how a deque<Tp> manages memory. Each deque has 4 members: 00781 * 00782 * - Tp** _M_map 00783 * - size_t _M_map_size 00784 * - iterator _M_start, _M_finish 00785 * 00786 * map_size is at least 8. %map is an array of map_size 00787 * pointers-to-@a nodes. (The name %map has nothing to do with the 00788 * std::map class, and @b nodes should not be confused with 00789 * std::list's usage of @a node.) 00790 * 00791 * A @a node has no specific type name as such, but it is referred 00792 * to as @a node in this file. It is a simple array-of-Tp. If Tp 00793 * is very large, there will be one Tp element per node (i.e., an 00794 * @a array of one). For non-huge Tp's, node size is inversely 00795 * related to Tp size: the larger the Tp, the fewer Tp's will fit 00796 * in a node. The goal here is to keep the total size of a node 00797 * relatively small and constant over different Tp's, to improve 00798 * allocator efficiency. 00799 * 00800 * Not every pointer in the %map array will point to a node. If 00801 * the initial number of elements in the deque is small, the 00802 * /middle/ %map pointers will be valid, and the ones at the edges 00803 * will be unused. This same situation will arise as the %map 00804 * grows: available %map pointers, if any, will be on the ends. As 00805 * new nodes are created, only a subset of the %map's pointers need 00806 * to be copied @a outward. 00807 * 00808 * Class invariants: 00809 * - For any nonsingular iterator i: 00810 * - i.node points to a member of the %map array. (Yes, you read that 00811 * correctly: i.node does not actually point to a node.) The member of 00812 * the %map array is what actually points to the node. 00813 * - i.first == *(i.node) (This points to the node (first Tp element).) 00814 * - i.last == i.first + node_size 00815 * - i.cur is a pointer in the range [i.first, i.last). NOTE: 00816 * the implication of this is that i.cur is always a dereferenceable 00817 * pointer, even if i is a past-the-end iterator. 00818 * - Start and Finish are always nonsingular iterators. NOTE: this 00819 * means that an empty deque must have one node, a deque with <N 00820 * elements (where N is the node buffer size) must have one node, a 00821 * deque with N through (2N-1) elements must have two nodes, etc. 00822 * - For every node other than start.node and finish.node, every 00823 * element in the node is an initialized object. If start.node == 00824 * finish.node, then [start.cur, finish.cur) are initialized 00825 * objects, and the elements outside that range are uninitialized 00826 * storage. Otherwise, [start.cur, start.last) and [finish.first, 00827 * finish.cur) are initialized objects, and [start.first, start.cur) 00828 * and [finish.cur, finish.last) are uninitialized storage. 00829 * - [%map, %map + map_size) is a valid, non-empty range. 00830 * - [start.node, finish.node] is a valid range contained within 00831 * [%map, %map + map_size). 00832 * - A pointer in the range [%map, %map + map_size) points to an allocated 00833 * node if and only if the pointer is in the range 00834 * [start.node, finish.node]. 00835 * 00836 * Here's the magic: nothing in deque is @b aware of the discontiguous 00837 * storage! 00838 * 00839 * The memory setup and layout occurs in the parent, _Base, and the iterator 00840 * class is entirely responsible for @a leaping from one node to the next. 00841 * All the implementation routines for deque itself work only through the 00842 * start and finish iterators. This keeps the routines simple and sane, 00843 * and we can use other standard algorithms as well. 00844 */ 00845 template<typename _Tp, typename _Alloc = std::allocator<_Tp> > 00846 class deque : protected _Deque_base<_Tp, _Alloc> 00847 { 00848 #ifdef _GLIBCXX_CONCEPT_CHECKS 00849 // concept requirements 00850 typedef typename _Alloc::value_type _Alloc_value_type; 00851 # if __cplusplus < 201103L 00852 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00853 # endif 00854 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) 00855 #endif 00856 00857 #if __cplusplus >= 201103L 00858 static_assert(is_same<typename remove_cv<_Tp>::type, _Tp>::value, 00859 "std::deque must have a non-const, non-volatile value_type"); 00860 # ifdef __STRICT_ANSI__ 00861 static_assert(is_same<typename _Alloc::value_type, _Tp>::value, 00862 "std::deque must have the same value_type as its allocator"); 00863 # endif 00864 #endif 00865 00866 typedef _Deque_base<_Tp, _Alloc> _Base; 00867 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; 00868 typedef typename _Base::_Alloc_traits _Alloc_traits; 00869 typedef typename _Base::_Map_pointer _Map_pointer; 00870 00871 public: 00872 typedef _Tp value_type; 00873 typedef typename _Alloc_traits::pointer pointer; 00874 typedef typename _Alloc_traits::const_pointer const_pointer; 00875 typedef typename _Alloc_traits::reference reference; 00876 typedef typename _Alloc_traits::const_reference const_reference; 00877 typedef typename _Base::iterator iterator; 00878 typedef typename _Base::const_iterator const_iterator; 00879 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 00880 typedef std::reverse_iterator<iterator> reverse_iterator; 00881 typedef size_t size_type; 00882 typedef ptrdiff_t difference_type; 00883 typedef _Alloc allocator_type; 00884 00885 protected: 00886 static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT 00887 { return __deque_buf_size(sizeof(_Tp)); } 00888 00889 // Functions controlling memory layout, and nothing else. 00890 using _Base::_M_initialize_map; 00891 using _Base::_M_create_nodes; 00892 using _Base::_M_destroy_nodes; 00893 using _Base::_M_allocate_node; 00894 using _Base::_M_deallocate_node; 00895 using _Base::_M_allocate_map; 00896 using _Base::_M_deallocate_map; 00897 using _Base::_M_get_Tp_allocator; 00898 00899 /** 00900 * A total of four data members accumulated down the hierarchy. 00901 * May be accessed via _M_impl.* 00902 */ 00903 using _Base::_M_impl; 00904 00905 public: 00906 // [23.2.1.1] construct/copy/destroy 00907 // (assign() and get_allocator() are also listed in this section) 00908 00909 /** 00910 * @brief Creates a %deque with no elements. 00911 */ 00912 deque() : _Base() { } 00913 00914 /** 00915 * @brief Creates a %deque with no elements. 00916 * @param __a An allocator object. 00917 */ 00918 explicit 00919 deque(const allocator_type& __a) 00920 : _Base(__a, 0) { } 00921 00922 #if __cplusplus >= 201103L 00923 /** 00924 * @brief Creates a %deque with default constructed elements. 00925 * @param __n The number of elements to initially create. 00926 * @param __a An allocator. 00927 * 00928 * This constructor fills the %deque with @a n default 00929 * constructed elements. 00930 */ 00931 explicit 00932 deque(size_type __n, const allocator_type& __a = allocator_type()) 00933 : _Base(__a, _S_check_init_len(__n, __a)) 00934 { _M_default_initialize(); } 00935 00936 /** 00937 * @brief Creates a %deque with copies of an exemplar element. 00938 * @param __n The number of elements to initially create. 00939 * @param __value An element to copy. 00940 * @param __a An allocator. 00941 * 00942 * This constructor fills the %deque with @a __n copies of @a __value. 00943 */ 00944 deque(size_type __n, const value_type& __value, 00945 const allocator_type& __a = allocator_type()) 00946 : _Base(__a, _S_check_init_len(__n, __a)) 00947 { _M_fill_initialize(__value); } 00948 #else 00949 /** 00950 * @brief Creates a %deque with copies of an exemplar element. 00951 * @param __n The number of elements to initially create. 00952 * @param __value An element to copy. 00953 * @param __a An allocator. 00954 * 00955 * This constructor fills the %deque with @a __n copies of @a __value. 00956 */ 00957 explicit 00958 deque(size_type __n, const value_type& __value = value_type(), 00959 const allocator_type& __a = allocator_type()) 00960 : _Base(__a, _S_check_init_len(__n, __a)) 00961 { _M_fill_initialize(__value); } 00962 #endif 00963 00964 /** 00965 * @brief %Deque copy constructor. 00966 * @param __x A %deque of identical element and allocator types. 00967 * 00968 * The newly-created %deque uses a copy of the allocator object used 00969 * by @a __x (unless the allocator traits dictate a different object). 00970 */ 00971 deque(const deque& __x) 00972 : _Base(_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()), 00973 __x.size()) 00974 { std::__uninitialized_copy_a(__x.begin(), __x.end(), 00975 this->_M_impl._M_start, 00976 _M_get_Tp_allocator()); } 00977 00978 #if __cplusplus >= 201103L 00979 /** 00980 * @brief %Deque move constructor. 00981 * @param __x A %deque of identical element and allocator types. 00982 * 00983 * The newly-created %deque contains the exact contents of @a __x. 00984 * The contents of @a __x are a valid, but unspecified %deque. 00985 */ 00986 deque(deque&& __x) 00987 : _Base(std::move(__x)) { } 00988 00989 /// Copy constructor with alternative allocator 00990 deque(const deque& __x, const allocator_type& __a) 00991 : _Base(__a, __x.size()) 00992 { std::__uninitialized_copy_a(__x.begin(), __x.end(), 00993 this->_M_impl._M_start, 00994 _M_get_Tp_allocator()); } 00995 00996 /// Move constructor with alternative allocator 00997 deque(deque&& __x, const allocator_type& __a) 00998 : _Base(std::move(__x), __a, __x.size()) 00999 { 01000 if (__x.get_allocator() != __a) 01001 { 01002 std::__uninitialized_move_a(__x.begin(), __x.end(), 01003 this->_M_impl._M_start, 01004 _M_get_Tp_allocator()); 01005 __x.clear(); 01006 } 01007 } 01008 01009 /** 01010 * @brief Builds a %deque from an initializer list. 01011 * @param __l An initializer_list. 01012 * @param __a An allocator object. 01013 * 01014 * Create a %deque consisting of copies of the elements in the 01015 * initializer_list @a __l. 01016 * 01017 * This will call the element type's copy constructor N times 01018 * (where N is __l.size()) and do no memory reallocation. 01019 */ 01020 deque(initializer_list<value_type> __l, 01021 const allocator_type& __a = allocator_type()) 01022 : _Base(__a) 01023 { 01024 _M_range_initialize(__l.begin(), __l.end(), 01025 random_access_iterator_tag()); 01026 } 01027 #endif 01028 01029 /** 01030 * @brief Builds a %deque from a range. 01031 * @param __first An input iterator. 01032 * @param __last An input iterator. 01033 * @param __a An allocator object. 01034 * 01035 * Create a %deque consisting of copies of the elements from [__first, 01036 * __last). 01037 * 01038 * If the iterators are forward, bidirectional, or random-access, then 01039 * this will call the elements' copy constructor N times (where N is 01040 * distance(__first,__last)) and do no memory reallocation. But if only 01041 * input iterators are used, then this will do at most 2N calls to the 01042 * copy constructor, and logN memory reallocations. 01043 */ 01044 #if __cplusplus >= 201103L 01045 template<typename _InputIterator, 01046 typename = std::_RequireInputIter<_InputIterator>> 01047 deque(_InputIterator __first, _InputIterator __last, 01048 const allocator_type& __a = allocator_type()) 01049 : _Base(__a) 01050 { _M_initialize_dispatch(__first, __last, __false_type()); } 01051 #else 01052 template<typename _InputIterator> 01053 deque(_InputIterator __first, _InputIterator __last, 01054 const allocator_type& __a = allocator_type()) 01055 : _Base(__a) 01056 { 01057 // Check whether it's an integral type. If so, it's not an iterator. 01058 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 01059 _M_initialize_dispatch(__first, __last, _Integral()); 01060 } 01061 #endif 01062 01063 /** 01064 * The dtor only erases the elements, and note that if the elements 01065 * themselves are pointers, the pointed-to memory is not touched in any 01066 * way. Managing the pointer is the user's responsibility. 01067 */ 01068 ~deque() 01069 { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); } 01070 01071 /** 01072 * @brief %Deque assignment operator. 01073 * @param __x A %deque of identical element and allocator types. 01074 * 01075 * All the elements of @a x are copied. 01076 * 01077 * The newly-created %deque uses a copy of the allocator object used 01078 * by @a __x (unless the allocator traits dictate a different object). 01079 */ 01080 deque& 01081 operator=(const deque& __x); 01082 01083 #if __cplusplus >= 201103L 01084 /** 01085 * @brief %Deque move assignment operator. 01086 * @param __x A %deque of identical element and allocator types. 01087 * 01088 * The contents of @a __x are moved into this deque (without copying, 01089 * if the allocators permit it). 01090 * @a __x is a valid, but unspecified %deque. 01091 */ 01092 deque& 01093 operator=(deque&& __x) noexcept(_Alloc_traits::_S_always_equal()) 01094 { 01095 using __always_equal = typename _Alloc_traits::is_always_equal; 01096 _M_move_assign1(std::move(__x), __always_equal{}); 01097 return *this; 01098 } 01099 01100 /** 01101 * @brief Assigns an initializer list to a %deque. 01102 * @param __l An initializer_list. 01103 * 01104 * This function fills a %deque with copies of the elements in the 01105 * initializer_list @a __l. 01106 * 01107 * Note that the assignment completely changes the %deque and that the 01108 * resulting %deque's size is the same as the number of elements 01109 * assigned. 01110 */ 01111 deque& 01112 operator=(initializer_list<value_type> __l) 01113 { 01114 _M_assign_aux(__l.begin(), __l.end(), 01115 random_access_iterator_tag()); 01116 return *this; 01117 } 01118 #endif 01119 01120 /** 01121 * @brief Assigns a given value to a %deque. 01122 * @param __n Number of elements to be assigned. 01123 * @param __val Value to be assigned. 01124 * 01125 * This function fills a %deque with @a n copies of the given 01126 * value. Note that the assignment completely changes the 01127 * %deque and that the resulting %deque's size is the same as 01128 * the number of elements assigned. 01129 */ 01130 void 01131 assign(size_type __n, const value_type& __val) 01132 { _M_fill_assign(__n, __val); } 01133 01134 /** 01135 * @brief Assigns a range to a %deque. 01136 * @param __first An input iterator. 01137 * @param __last An input iterator. 01138 * 01139 * This function fills a %deque with copies of the elements in the 01140 * range [__first,__last). 01141 * 01142 * Note that the assignment completely changes the %deque and that the 01143 * resulting %deque's size is the same as the number of elements 01144 * assigned. 01145 */ 01146 #if __cplusplus >= 201103L 01147 template<typename _InputIterator, 01148 typename = std::_RequireInputIter<_InputIterator>> 01149 void 01150 assign(_InputIterator __first, _InputIterator __last) 01151 { _M_assign_dispatch(__first, __last, __false_type()); } 01152 #else 01153 template<typename _InputIterator> 01154 void 01155 assign(_InputIterator __first, _InputIterator __last) 01156 { 01157 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 01158 _M_assign_dispatch(__first, __last, _Integral()); 01159 } 01160 #endif 01161 01162 #if __cplusplus >= 201103L 01163 /** 01164 * @brief Assigns an initializer list to a %deque. 01165 * @param __l An initializer_list. 01166 * 01167 * This function fills a %deque with copies of the elements in the 01168 * initializer_list @a __l. 01169 * 01170 * Note that the assignment completely changes the %deque and that the 01171 * resulting %deque's size is the same as the number of elements 01172 * assigned. 01173 */ 01174 void 01175 assign(initializer_list<value_type> __l) 01176 { _M_assign_aux(__l.begin(), __l.end(), random_access_iterator_tag()); } 01177 #endif 01178 01179 /// Get a copy of the memory allocation object. 01180 allocator_type 01181 get_allocator() const _GLIBCXX_NOEXCEPT 01182 { return _Base::get_allocator(); } 01183 01184 // iterators 01185 /** 01186 * Returns a read/write iterator that points to the first element in the 01187 * %deque. Iteration is done in ordinary element order. 01188 */ 01189 iterator 01190 begin() _GLIBCXX_NOEXCEPT 01191 { return this->_M_impl._M_start; } 01192 01193 /** 01194 * Returns a read-only (constant) iterator that points to the first 01195 * element in the %deque. Iteration is done in ordinary element order. 01196 */ 01197 const_iterator 01198 begin() const _GLIBCXX_NOEXCEPT 01199 { return this->_M_impl._M_start; } 01200 01201 /** 01202 * Returns a read/write iterator that points one past the last 01203 * element in the %deque. Iteration is done in ordinary 01204 * element order. 01205 */ 01206 iterator 01207 end() _GLIBCXX_NOEXCEPT 01208 { return this->_M_impl._M_finish; } 01209 01210 /** 01211 * Returns a read-only (constant) iterator that points one past 01212 * the last element in the %deque. Iteration is done in 01213 * ordinary element order. 01214 */ 01215 const_iterator 01216 end() const _GLIBCXX_NOEXCEPT 01217 { return this->_M_impl._M_finish; } 01218 01219 /** 01220 * Returns a read/write reverse iterator that points to the 01221 * last element in the %deque. Iteration is done in reverse 01222 * element order. 01223 */ 01224 reverse_iterator 01225 rbegin() _GLIBCXX_NOEXCEPT 01226 { return reverse_iterator(this->_M_impl._M_finish); } 01227 01228 /** 01229 * Returns a read-only (constant) reverse iterator that points 01230 * to the last element in the %deque. Iteration is done in 01231 * reverse element order. 01232 */ 01233 const_reverse_iterator 01234 rbegin() const _GLIBCXX_NOEXCEPT 01235 { return const_reverse_iterator(this->_M_impl._M_finish); } 01236 01237 /** 01238 * Returns a read/write reverse iterator that points to one 01239 * before the first element in the %deque. Iteration is done 01240 * in reverse element order. 01241 */ 01242 reverse_iterator 01243 rend() _GLIBCXX_NOEXCEPT 01244 { return reverse_iterator(this->_M_impl._M_start); } 01245 01246 /** 01247 * Returns a read-only (constant) reverse iterator that points 01248 * to one before the first element in the %deque. Iteration is 01249 * done in reverse element order. 01250 */ 01251 const_reverse_iterator 01252 rend() const _GLIBCXX_NOEXCEPT 01253 { return const_reverse_iterator(this->_M_impl._M_start); } 01254 01255 #if __cplusplus >= 201103L 01256 /** 01257 * Returns a read-only (constant) iterator that points to the first 01258 * element in the %deque. Iteration is done in ordinary element order. 01259 */ 01260 const_iterator 01261 cbegin() const noexcept 01262 { return this->_M_impl._M_start; } 01263 01264 /** 01265 * Returns a read-only (constant) iterator that points one past 01266 * the last element in the %deque. Iteration is done in 01267 * ordinary element order. 01268 */ 01269 const_iterator 01270 cend() const noexcept 01271 { return this->_M_impl._M_finish; } 01272 01273 /** 01274 * Returns a read-only (constant) reverse iterator that points 01275 * to the last element in the %deque. Iteration is done in 01276 * reverse element order. 01277 */ 01278 const_reverse_iterator 01279 crbegin() const noexcept 01280 { return const_reverse_iterator(this->_M_impl._M_finish); } 01281 01282 /** 01283 * Returns a read-only (constant) reverse iterator that points 01284 * to one before the first element in the %deque. Iteration is 01285 * done in reverse element order. 01286 */ 01287 const_reverse_iterator 01288 crend() const noexcept 01289 { return const_reverse_iterator(this->_M_impl._M_start); } 01290 #endif 01291 01292 // [23.2.1.2] capacity 01293 /** Returns the number of elements in the %deque. */ 01294 size_type 01295 size() const _GLIBCXX_NOEXCEPT 01296 { return this->_M_impl._M_finish - this->_M_impl._M_start; } 01297 01298 /** Returns the size() of the largest possible %deque. */ 01299 size_type 01300 max_size() const _GLIBCXX_NOEXCEPT 01301 { return _S_max_size(_M_get_Tp_allocator()); } 01302 01303 #if __cplusplus >= 201103L 01304 /** 01305 * @brief Resizes the %deque to the specified number of elements. 01306 * @param __new_size Number of elements the %deque should contain. 01307 * 01308 * This function will %resize the %deque to the specified 01309 * number of elements. If the number is smaller than the 01310 * %deque's current size the %deque is truncated, otherwise 01311 * default constructed elements are appended. 01312 */ 01313 void 01314 resize(size_type __new_size) 01315 { 01316 const size_type __len = size(); 01317 if (__new_size > __len) 01318 _M_default_append(__new_size - __len); 01319 else if (__new_size < __len) 01320 _M_erase_at_end(this->_M_impl._M_start 01321 + difference_type(__new_size)); 01322 } 01323 01324 /** 01325 * @brief Resizes the %deque to the specified number of elements. 01326 * @param __new_size Number of elements the %deque should contain. 01327 * @param __x Data with which new elements should be populated. 01328 * 01329 * This function will %resize the %deque to the specified 01330 * number of elements. If the number is smaller than the 01331 * %deque's current size the %deque is truncated, otherwise the 01332 * %deque is extended and new elements are populated with given 01333 * data. 01334 */ 01335 void 01336 resize(size_type __new_size, const value_type& __x) 01337 { 01338 const size_type __len = size(); 01339 if (__new_size > __len) 01340 _M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x); 01341 else if (__new_size < __len) 01342 _M_erase_at_end(this->_M_impl._M_start 01343 + difference_type(__new_size)); 01344 } 01345 #else 01346 /** 01347 * @brief Resizes the %deque to the specified number of elements. 01348 * @param __new_size Number of elements the %deque should contain. 01349 * @param __x Data with which new elements should be populated. 01350 * 01351 * This function will %resize the %deque to the specified 01352 * number of elements. If the number is smaller than the 01353 * %deque's current size the %deque is truncated, otherwise the 01354 * %deque is extended and new elements are populated with given 01355 * data. 01356 */ 01357 void 01358 resize(size_type __new_size, value_type __x = value_type()) 01359 { 01360 const size_type __len = size(); 01361 if (__new_size > __len) 01362 _M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x); 01363 else if (__new_size < __len) 01364 _M_erase_at_end(this->_M_impl._M_start 01365 + difference_type(__new_size)); 01366 } 01367 #endif 01368 01369 #if __cplusplus >= 201103L 01370 /** A non-binding request to reduce memory use. */ 01371 void 01372 shrink_to_fit() noexcept 01373 { _M_shrink_to_fit(); } 01374 #endif 01375 01376 /** 01377 * Returns true if the %deque is empty. (Thus begin() would 01378 * equal end().) 01379 */ 01380 _GLIBCXX_NODISCARD bool 01381 empty() const _GLIBCXX_NOEXCEPT 01382 { return this->_M_impl._M_finish == this->_M_impl._M_start; } 01383 01384 // element access 01385 /** 01386 * @brief Subscript access to the data contained in the %deque. 01387 * @param __n The index of the element for which data should be 01388 * accessed. 01389 * @return Read/write reference to data. 01390 * 01391 * This operator allows for easy, array-style, data access. 01392 * Note that data access with this operator is unchecked and 01393 * out_of_range lookups are not defined. (For checked lookups 01394 * see at().) 01395 */ 01396 reference 01397 operator[](size_type __n) _GLIBCXX_NOEXCEPT 01398 { 01399 __glibcxx_requires_subscript(__n); 01400 return this->_M_impl._M_start[difference_type(__n)]; 01401 } 01402 01403 /** 01404 * @brief Subscript access to the data contained in the %deque. 01405 * @param __n The index of the element for which data should be 01406 * accessed. 01407 * @return Read-only (constant) reference to data. 01408 * 01409 * This operator allows for easy, array-style, data access. 01410 * Note that data access with this operator is unchecked and 01411 * out_of_range lookups are not defined. (For checked lookups 01412 * see at().) 01413 */ 01414 const_reference 01415 operator[](size_type __n) const _GLIBCXX_NOEXCEPT 01416 { 01417 __glibcxx_requires_subscript(__n); 01418 return this->_M_impl._M_start[difference_type(__n)]; 01419 } 01420 01421 protected: 01422 /// Safety check used only from at(). 01423 void 01424 _M_range_check(size_type __n) const 01425 { 01426 if (__n >= this->size()) 01427 __throw_out_of_range_fmt(__N("deque::_M_range_check: __n " 01428 "(which is %zu)>= this->size() " 01429 "(which is %zu)"), 01430 __n, this->size()); 01431 } 01432 01433 public: 01434 /** 01435 * @brief Provides access to the data contained in the %deque. 01436 * @param __n The index of the element for which data should be 01437 * accessed. 01438 * @return Read/write reference to data. 01439 * @throw std::out_of_range If @a __n is an invalid index. 01440 * 01441 * This function provides for safer data access. The parameter 01442 * is first checked that it is in the range of the deque. The 01443 * function throws out_of_range if the check fails. 01444 */ 01445 reference 01446 at(size_type __n) 01447 { 01448 _M_range_check(__n); 01449 return (*this)[__n]; 01450 } 01451 01452 /** 01453 * @brief Provides access to the data contained in the %deque. 01454 * @param __n The index of the element for which data should be 01455 * accessed. 01456 * @return Read-only (constant) reference to data. 01457 * @throw std::out_of_range If @a __n is an invalid index. 01458 * 01459 * This function provides for safer data access. The parameter is first 01460 * checked that it is in the range of the deque. The function throws 01461 * out_of_range if the check fails. 01462 */ 01463 const_reference 01464 at(size_type __n) const 01465 { 01466 _M_range_check(__n); 01467 return (*this)[__n]; 01468 } 01469 01470 /** 01471 * Returns a read/write reference to the data at the first 01472 * element of the %deque. 01473 */ 01474 reference 01475 front() _GLIBCXX_NOEXCEPT 01476 { 01477 __glibcxx_requires_nonempty(); 01478 return *begin(); 01479 } 01480 01481 /** 01482 * Returns a read-only (constant) reference to the data at the first 01483 * element of the %deque. 01484 */ 01485 const_reference 01486 front() const _GLIBCXX_NOEXCEPT 01487 { 01488 __glibcxx_requires_nonempty(); 01489 return *begin(); 01490 } 01491 01492 /** 01493 * Returns a read/write reference to the data at the last element of the 01494 * %deque. 01495 */ 01496 reference 01497 back() _GLIBCXX_NOEXCEPT 01498 { 01499 __glibcxx_requires_nonempty(); 01500 iterator __tmp = end(); 01501 --__tmp; 01502 return *__tmp; 01503 } 01504 01505 /** 01506 * Returns a read-only (constant) reference to the data at the last 01507 * element of the %deque. 01508 */ 01509 const_reference 01510 back() const _GLIBCXX_NOEXCEPT 01511 { 01512 __glibcxx_requires_nonempty(); 01513 const_iterator __tmp = end(); 01514 --__tmp; 01515 return *__tmp; 01516 } 01517 01518 // [23.2.1.2] modifiers 01519 /** 01520 * @brief Add data to the front of the %deque. 01521 * @param __x Data to be added. 01522 * 01523 * This is a typical stack operation. The function creates an 01524 * element at the front of the %deque and assigns the given 01525 * data to it. Due to the nature of a %deque this operation 01526 * can be done in constant time. 01527 */ 01528 void 01529 push_front(const value_type& __x) 01530 { 01531 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first) 01532 { 01533 _Alloc_traits::construct(this->_M_impl, 01534 this->_M_impl._M_start._M_cur - 1, 01535 __x); 01536 --this->_M_impl._M_start._M_cur; 01537 } 01538 else 01539 _M_push_front_aux(__x); 01540 } 01541 01542 #if __cplusplus >= 201103L 01543 void 01544 push_front(value_type&& __x) 01545 { emplace_front(std::move(__x)); } 01546 01547 template<typename... _Args> 01548 #if __cplusplus > 201402L 01549 reference 01550 #else 01551 void 01552 #endif 01553 emplace_front(_Args&&... __args); 01554 #endif 01555 01556 /** 01557 * @brief Add data to the end of the %deque. 01558 * @param __x Data to be added. 01559 * 01560 * This is a typical stack operation. The function creates an 01561 * element at the end of the %deque and assigns the given data 01562 * to it. Due to the nature of a %deque this operation can be 01563 * done in constant time. 01564 */ 01565 void 01566 push_back(const value_type& __x) 01567 { 01568 if (this->_M_impl._M_finish._M_cur 01569 != this->_M_impl._M_finish._M_last - 1) 01570 { 01571 _Alloc_traits::construct(this->_M_impl, 01572 this->_M_impl._M_finish._M_cur, __x); 01573 ++this->_M_impl._M_finish._M_cur; 01574 } 01575 else 01576 _M_push_back_aux(__x); 01577 } 01578 01579 #if __cplusplus >= 201103L 01580 void 01581 push_back(value_type&& __x) 01582 { emplace_back(std::move(__x)); } 01583 01584 template<typename... _Args> 01585 #if __cplusplus > 201402L 01586 reference 01587 #else 01588 void 01589 #endif 01590 emplace_back(_Args&&... __args); 01591 #endif 01592 01593 /** 01594 * @brief Removes first element. 01595 * 01596 * This is a typical stack operation. It shrinks the %deque by one. 01597 * 01598 * Note that no data is returned, and if the first element's data is 01599 * needed, it should be retrieved before pop_front() is called. 01600 */ 01601 void 01602 pop_front() _GLIBCXX_NOEXCEPT 01603 { 01604 __glibcxx_requires_nonempty(); 01605 if (this->_M_impl._M_start._M_cur 01606 != this->_M_impl._M_start._M_last - 1) 01607 { 01608 _Alloc_traits::destroy(this->_M_impl, 01609 this->_M_impl._M_start._M_cur); 01610 ++this->_M_impl._M_start._M_cur; 01611 } 01612 else 01613 _M_pop_front_aux(); 01614 } 01615 01616 /** 01617 * @brief Removes last element. 01618 * 01619 * This is a typical stack operation. It shrinks the %deque by one. 01620 * 01621 * Note that no data is returned, and if the last element's data is 01622 * needed, it should be retrieved before pop_back() is called. 01623 */ 01624 void 01625 pop_back() _GLIBCXX_NOEXCEPT 01626 { 01627 __glibcxx_requires_nonempty(); 01628 if (this->_M_impl._M_finish._M_cur 01629 != this->_M_impl._M_finish._M_first) 01630 { 01631 --this->_M_impl._M_finish._M_cur; 01632 _Alloc_traits::destroy(this->_M_impl, 01633 this->_M_impl._M_finish._M_cur); 01634 } 01635 else 01636 _M_pop_back_aux(); 01637 } 01638 01639 #if __cplusplus >= 201103L 01640 /** 01641 * @brief Inserts an object in %deque before specified iterator. 01642 * @param __position A const_iterator into the %deque. 01643 * @param __args Arguments. 01644 * @return An iterator that points to the inserted data. 01645 * 01646 * This function will insert an object of type T constructed 01647 * with T(std::forward<Args>(args)...) before the specified location. 01648 */ 01649 template<typename... _Args> 01650 iterator 01651 emplace(const_iterator __position, _Args&&... __args); 01652 01653 /** 01654 * @brief Inserts given value into %deque before specified iterator. 01655 * @param __position A const_iterator into the %deque. 01656 * @param __x Data to be inserted. 01657 * @return An iterator that points to the inserted data. 01658 * 01659 * This function will insert a copy of the given value before the 01660 * specified location. 01661 */ 01662 iterator 01663 insert(const_iterator __position, const value_type& __x); 01664 #else 01665 /** 01666 * @brief Inserts given value into %deque before specified iterator. 01667 * @param __position An iterator into the %deque. 01668 * @param __x Data to be inserted. 01669 * @return An iterator that points to the inserted data. 01670 * 01671 * This function will insert a copy of the given value before the 01672 * specified location. 01673 */ 01674 iterator 01675 insert(iterator __position, const value_type& __x); 01676 #endif 01677 01678 #if __cplusplus >= 201103L 01679 /** 01680 * @brief Inserts given rvalue into %deque before specified iterator. 01681 * @param __position A const_iterator into the %deque. 01682 * @param __x Data to be inserted. 01683 * @return An iterator that points to the inserted data. 01684 * 01685 * This function will insert a copy of the given rvalue before the 01686 * specified location. 01687 */ 01688 iterator 01689 insert(const_iterator __position, value_type&& __x) 01690 { return emplace(__position, std::move(__x)); } 01691 01692 /** 01693 * @brief Inserts an initializer list into the %deque. 01694 * @param __p An iterator into the %deque. 01695 * @param __l An initializer_list. 01696 * 01697 * This function will insert copies of the data in the 01698 * initializer_list @a __l into the %deque before the location 01699 * specified by @a __p. This is known as <em>list insert</em>. 01700 */ 01701 iterator 01702 insert(const_iterator __p, initializer_list<value_type> __l) 01703 { 01704 auto __offset = __p - cbegin(); 01705 _M_range_insert_aux(__p._M_const_cast(), __l.begin(), __l.end(), 01706 std::random_access_iterator_tag()); 01707 return begin() + __offset; 01708 } 01709 #endif 01710 01711 #if __cplusplus >= 201103L 01712 /** 01713 * @brief Inserts a number of copies of given data into the %deque. 01714 * @param __position A const_iterator into the %deque. 01715 * @param __n Number of elements to be inserted. 01716 * @param __x Data to be inserted. 01717 * @return An iterator that points to the inserted data. 01718 * 01719 * This function will insert a specified number of copies of the given 01720 * data before the location specified by @a __position. 01721 */ 01722 iterator 01723 insert(const_iterator __position, size_type __n, const value_type& __x) 01724 { 01725 difference_type __offset = __position - cbegin(); 01726 _M_fill_insert(__position._M_const_cast(), __n, __x); 01727 return begin() + __offset; 01728 } 01729 #else 01730 /** 01731 * @brief Inserts a number of copies of given data into the %deque. 01732 * @param __position An iterator into the %deque. 01733 * @param __n Number of elements to be inserted. 01734 * @param __x Data to be inserted. 01735 * 01736 * This function will insert a specified number of copies of the given 01737 * data before the location specified by @a __position. 01738 */ 01739 void 01740 insert(iterator __position, size_type __n, const value_type& __x) 01741 { _M_fill_insert(__position, __n, __x); } 01742 #endif 01743 01744 #if __cplusplus >= 201103L 01745 /** 01746 * @brief Inserts a range into the %deque. 01747 * @param __position A const_iterator into the %deque. 01748 * @param __first An input iterator. 01749 * @param __last An input iterator. 01750 * @return An iterator that points to the inserted data. 01751 * 01752 * This function will insert copies of the data in the range 01753 * [__first,__last) into the %deque before the location specified 01754 * by @a __position. This is known as <em>range insert</em>. 01755 */ 01756 template<typename _InputIterator, 01757 typename = std::_RequireInputIter<_InputIterator>> 01758 iterator 01759 insert(const_iterator __position, _InputIterator __first, 01760 _InputIterator __last) 01761 { 01762 difference_type __offset = __position - cbegin(); 01763 _M_insert_dispatch(__position._M_const_cast(), 01764 __first, __last, __false_type()); 01765 return begin() + __offset; 01766 } 01767 #else 01768 /** 01769 * @brief Inserts a range into the %deque. 01770 * @param __position An iterator into the %deque. 01771 * @param __first An input iterator. 01772 * @param __last An input iterator. 01773 * 01774 * This function will insert copies of the data in the range 01775 * [__first,__last) into the %deque before the location specified 01776 * by @a __position. This is known as <em>range insert</em>. 01777 */ 01778 template<typename _InputIterator> 01779 void 01780 insert(iterator __position, _InputIterator __first, 01781 _InputIterator __last) 01782 { 01783 // Check whether it's an integral type. If so, it's not an iterator. 01784 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 01785 _M_insert_dispatch(__position, __first, __last, _Integral()); 01786 } 01787 #endif 01788 01789 /** 01790 * @brief Remove element at given position. 01791 * @param __position Iterator pointing to element to be erased. 01792 * @return An iterator pointing to the next element (or end()). 01793 * 01794 * This function will erase the element at the given position and thus 01795 * shorten the %deque by one. 01796 * 01797 * The user is cautioned that 01798 * this function only erases the element, and that if the element is 01799 * itself a pointer, the pointed-to memory is not touched in any way. 01800 * Managing the pointer is the user's responsibility. 01801 */ 01802 iterator 01803 #if __cplusplus >= 201103L 01804 erase(const_iterator __position) 01805 #else 01806 erase(iterator __position) 01807 #endif 01808 { return _M_erase(__position._M_const_cast()); } 01809 01810 /** 01811 * @brief Remove a range of elements. 01812 * @param __first Iterator pointing to the first element to be erased. 01813 * @param __last Iterator pointing to one past the last element to be 01814 * erased. 01815 * @return An iterator pointing to the element pointed to by @a last 01816 * prior to erasing (or end()). 01817 * 01818 * This function will erase the elements in the range 01819 * [__first,__last) and shorten the %deque accordingly. 01820 * 01821 * The user is cautioned that 01822 * this function only erases the elements, and that if the elements 01823 * themselves are pointers, the pointed-to memory is not touched in any 01824 * way. Managing the pointer is the user's responsibility. 01825 */ 01826 iterator 01827 #if __cplusplus >= 201103L 01828 erase(const_iterator __first, const_iterator __last) 01829 #else 01830 erase(iterator __first, iterator __last) 01831 #endif 01832 { return _M_erase(__first._M_const_cast(), __last._M_const_cast()); } 01833 01834 /** 01835 * @brief Swaps data with another %deque. 01836 * @param __x A %deque of the same element and allocator types. 01837 * 01838 * This exchanges the elements between two deques in constant time. 01839 * (Four pointers, so it should be quite fast.) 01840 * Note that the global std::swap() function is specialized such that 01841 * std::swap(d1,d2) will feed to this function. 01842 * 01843 * Whether the allocators are swapped depends on the allocator traits. 01844 */ 01845 void 01846 swap(deque& __x) _GLIBCXX_NOEXCEPT 01847 { 01848 #if __cplusplus >= 201103L 01849 __glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value 01850 || _M_get_Tp_allocator() == __x._M_get_Tp_allocator()); 01851 #endif 01852 _M_impl._M_swap_data(__x._M_impl); 01853 _Alloc_traits::_S_on_swap(_M_get_Tp_allocator(), 01854 __x._M_get_Tp_allocator()); 01855 } 01856 01857 /** 01858 * Erases all the elements. Note that this function only erases the 01859 * elements, and that if the elements themselves are pointers, the 01860 * pointed-to memory is not touched in any way. Managing the pointer is 01861 * the user's responsibility. 01862 */ 01863 void 01864 clear() _GLIBCXX_NOEXCEPT 01865 { _M_erase_at_end(begin()); } 01866 01867 protected: 01868 // Internal constructor functions follow. 01869 01870 // called by the range constructor to implement [23.1.1]/9 01871 01872 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01873 // 438. Ambiguity in the "do the right thing" clause 01874 template<typename _Integer> 01875 void 01876 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) 01877 { 01878 _M_initialize_map(_S_check_init_len(static_cast<size_type>(__n), 01879 _M_get_Tp_allocator())); 01880 _M_fill_initialize(__x); 01881 } 01882 01883 static size_t 01884 _S_check_init_len(size_t __n, const allocator_type& __a) 01885 { 01886 if (__n > _S_max_size(__a)) 01887 __throw_length_error( 01888 __N("cannot create std::deque larger than max_size()")); 01889 return __n; 01890 } 01891 01892 static size_type 01893 _S_max_size(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT 01894 { 01895 const size_t __diffmax = __gnu_cxx::__numeric_traits<ptrdiff_t>::__max; 01896 const size_t __allocmax = _Alloc_traits::max_size(__a); 01897 return (std::min)(__diffmax, __allocmax); 01898 } 01899 01900 // called by the range constructor to implement [23.1.1]/9 01901 template<typename _InputIterator> 01902 void 01903 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, 01904 __false_type) 01905 { 01906 _M_range_initialize(__first, __last, 01907 std::__iterator_category(__first)); 01908 } 01909 01910 // called by the second initialize_dispatch above 01911 //@{ 01912 /** 01913 * @brief Fills the deque with whatever is in [first,last). 01914 * @param __first An input iterator. 01915 * @param __last An input iterator. 01916 * @return Nothing. 01917 * 01918 * If the iterators are actually forward iterators (or better), then the 01919 * memory layout can be done all at once. Else we move forward using 01920 * push_back on each value from the iterator. 01921 */ 01922 template<typename _InputIterator> 01923 void 01924 _M_range_initialize(_InputIterator __first, _InputIterator __last, 01925 std::input_iterator_tag); 01926 01927 // called by the second initialize_dispatch above 01928 template<typename _ForwardIterator> 01929 void 01930 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, 01931 std::forward_iterator_tag); 01932 //@} 01933 01934 /** 01935 * @brief Fills the %deque with copies of value. 01936 * @param __value Initial value. 01937 * @return Nothing. 01938 * @pre _M_start and _M_finish have already been initialized, 01939 * but none of the %deque's elements have yet been constructed. 01940 * 01941 * This function is called only when the user provides an explicit size 01942 * (with or without an explicit exemplar value). 01943 */ 01944 void 01945 _M_fill_initialize(const value_type& __value); 01946 01947 #if __cplusplus >= 201103L 01948 // called by deque(n). 01949 void 01950 _M_default_initialize(); 01951 #endif 01952 01953 // Internal assign functions follow. The *_aux functions do the actual 01954 // assignment work for the range versions. 01955 01956 // called by the range assign to implement [23.1.1]/9 01957 01958 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01959 // 438. Ambiguity in the "do the right thing" clause 01960 template<typename _Integer> 01961 void 01962 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) 01963 { _M_fill_assign(__n, __val); } 01964 01965 // called by the range assign to implement [23.1.1]/9 01966 template<typename _InputIterator> 01967 void 01968 _M_assign_dispatch(_InputIterator __first, _InputIterator __last, 01969 __false_type) 01970 { _M_assign_aux(__first, __last, std::__iterator_category(__first)); } 01971 01972 // called by the second assign_dispatch above 01973 template<typename _InputIterator> 01974 void 01975 _M_assign_aux(_InputIterator __first, _InputIterator __last, 01976 std::input_iterator_tag); 01977 01978 // called by the second assign_dispatch above 01979 template<typename _ForwardIterator> 01980 void 01981 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, 01982 std::forward_iterator_tag) 01983 { 01984 const size_type __len = std::distance(__first, __last); 01985 if (__len > size()) 01986 { 01987 _ForwardIterator __mid = __first; 01988 std::advance(__mid, size()); 01989 std::copy(__first, __mid, begin()); 01990 _M_range_insert_aux(end(), __mid, __last, 01991 std::__iterator_category(__first)); 01992 } 01993 else 01994 _M_erase_at_end(std::copy(__first, __last, begin())); 01995 } 01996 01997 // Called by assign(n,t), and the range assign when it turns out 01998 // to be the same thing. 01999 void 02000 _M_fill_assign(size_type __n, const value_type& __val) 02001 { 02002 if (__n > size()) 02003 { 02004 std::fill(begin(), end(), __val); 02005 _M_fill_insert(end(), __n - size(), __val); 02006 } 02007 else 02008 { 02009 _M_erase_at_end(begin() + difference_type(__n)); 02010 std::fill(begin(), end(), __val); 02011 } 02012 } 02013 02014 //@{ 02015 /// Helper functions for push_* and pop_*. 02016 #if __cplusplus < 201103L 02017 void _M_push_back_aux(const value_type&); 02018 02019 void _M_push_front_aux(const value_type&); 02020 #else 02021 template<typename... _Args> 02022 void _M_push_back_aux(_Args&&... __args); 02023 02024 template<typename... _Args> 02025 void _M_push_front_aux(_Args&&... __args); 02026 #endif 02027 02028 void _M_pop_back_aux(); 02029 02030 void _M_pop_front_aux(); 02031 //@} 02032 02033 // Internal insert functions follow. The *_aux functions do the actual 02034 // insertion work when all shortcuts fail. 02035 02036 // called by the range insert to implement [23.1.1]/9 02037 02038 // _GLIBCXX_RESOLVE_LIB_DEFECTS 02039 // 438. Ambiguity in the "do the right thing" clause 02040 template<typename _Integer> 02041 void 02042 _M_insert_dispatch(iterator __pos, 02043 _Integer __n, _Integer __x, __true_type) 02044 { _M_fill_insert(__pos, __n, __x); } 02045 02046 // called by the range insert to implement [23.1.1]/9 02047 template<typename _InputIterator> 02048 void 02049 _M_insert_dispatch(iterator __pos, 02050 _InputIterator __first, _InputIterator __last, 02051 __false_type) 02052 { 02053 _M_range_insert_aux(__pos, __first, __last, 02054 std::__iterator_category(__first)); 02055 } 02056 02057 // called by the second insert_dispatch above 02058 template<typename _InputIterator> 02059 void 02060 _M_range_insert_aux(iterator __pos, _InputIterator __first, 02061 _InputIterator __last, std::input_iterator_tag); 02062 02063 // called by the second insert_dispatch above 02064 template<typename _ForwardIterator> 02065 void 02066 _M_range_insert_aux(iterator __pos, _ForwardIterator __first, 02067 _ForwardIterator __last, std::forward_iterator_tag); 02068 02069 // Called by insert(p,n,x), and the range insert when it turns out to be 02070 // the same thing. Can use fill functions in optimal situations, 02071 // otherwise passes off to insert_aux(p,n,x). 02072 void 02073 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); 02074 02075 // called by insert(p,x) 02076 #if __cplusplus < 201103L 02077 iterator 02078 _M_insert_aux(iterator __pos, const value_type& __x); 02079 #else 02080 template<typename... _Args> 02081 iterator 02082 _M_insert_aux(iterator __pos, _Args&&... __args); 02083 #endif 02084 02085 // called by insert(p,n,x) via fill_insert 02086 void 02087 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x); 02088 02089 // called by range_insert_aux for forward iterators 02090 template<typename _ForwardIterator> 02091 void 02092 _M_insert_aux(iterator __pos, 02093 _ForwardIterator __first, _ForwardIterator __last, 02094 size_type __n); 02095 02096 02097 // Internal erase functions follow. 02098 02099 void 02100 _M_destroy_data_aux(iterator __first, iterator __last); 02101 02102 // Called by ~deque(). 02103 // NB: Doesn't deallocate the nodes. 02104 template<typename _Alloc1> 02105 void 02106 _M_destroy_data(iterator __first, iterator __last, const _Alloc1&) 02107 { _M_destroy_data_aux(__first, __last); } 02108 02109 void 02110 _M_destroy_data(iterator __first, iterator __last, 02111 const std::allocator<_Tp>&) 02112 { 02113 if (!__has_trivial_destructor(value_type)) 02114 _M_destroy_data_aux(__first, __last); 02115 } 02116 02117 // Called by erase(q1, q2). 02118 void 02119 _M_erase_at_begin(iterator __pos) 02120 { 02121 _M_destroy_data(begin(), __pos, _M_get_Tp_allocator()); 02122 _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node); 02123 this->_M_impl._M_start = __pos; 02124 } 02125 02126 // Called by erase(q1, q2), resize(), clear(), _M_assign_aux, 02127 // _M_fill_assign, operator=. 02128 void 02129 _M_erase_at_end(iterator __pos) 02130 { 02131 _M_destroy_data(__pos, end(), _M_get_Tp_allocator()); 02132 _M_destroy_nodes(__pos._M_node + 1, 02133 this->_M_impl._M_finish._M_node + 1); 02134 this->_M_impl._M_finish = __pos; 02135 } 02136 02137 iterator 02138 _M_erase(iterator __pos); 02139 02140 iterator 02141 _M_erase(iterator __first, iterator __last); 02142 02143 #if __cplusplus >= 201103L 02144 // Called by resize(sz). 02145 void 02146 _M_default_append(size_type __n); 02147 02148 bool 02149 _M_shrink_to_fit(); 02150 #endif 02151 02152 //@{ 02153 /// Memory-handling helpers for the previous internal insert functions. 02154 iterator 02155 _M_reserve_elements_at_front(size_type __n) 02156 { 02157 const size_type __vacancies = this->_M_impl._M_start._M_cur 02158 - this->_M_impl._M_start._M_first; 02159 if (__n > __vacancies) 02160 _M_new_elements_at_front(__n - __vacancies); 02161 return this->_M_impl._M_start - difference_type(__n); 02162 } 02163 02164 iterator 02165 _M_reserve_elements_at_back(size_type __n) 02166 { 02167 const size_type __vacancies = (this->_M_impl._M_finish._M_last 02168 - this->_M_impl._M_finish._M_cur) - 1; 02169 if (__n > __vacancies) 02170 _M_new_elements_at_back(__n - __vacancies); 02171 return this->_M_impl._M_finish + difference_type(__n); 02172 } 02173 02174 void 02175 _M_new_elements_at_front(size_type __new_elements); 02176 02177 void 02178 _M_new_elements_at_back(size_type __new_elements); 02179 //@} 02180 02181 02182 //@{ 02183 /** 02184 * @brief Memory-handling helpers for the major %map. 02185 * 02186 * Makes sure the _M_map has space for new nodes. Does not 02187 * actually add the nodes. Can invalidate _M_map pointers. 02188 * (And consequently, %deque iterators.) 02189 */ 02190 void 02191 _M_reserve_map_at_back(size_type __nodes_to_add = 1) 02192 { 02193 if (__nodes_to_add + 1 > this->_M_impl._M_map_size 02194 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map)) 02195 _M_reallocate_map(__nodes_to_add, false); 02196 } 02197 02198 void 02199 _M_reserve_map_at_front(size_type __nodes_to_add = 1) 02200 { 02201 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node 02202 - this->_M_impl._M_map)) 02203 _M_reallocate_map(__nodes_to_add, true); 02204 } 02205 02206 void 02207 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); 02208 //@} 02209 02210 #if __cplusplus >= 201103L 02211 // Constant-time, nothrow move assignment when source object's memory 02212 // can be moved because the allocators are equal. 02213 void 02214 _M_move_assign1(deque&& __x, /* always equal: */ true_type) noexcept 02215 { 02216 this->_M_impl._M_swap_data(__x._M_impl); 02217 __x.clear(); 02218 std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator()); 02219 } 02220 02221 // When the allocators are not equal the operation could throw, because 02222 // we might need to allocate a new map for __x after moving from it 02223 // or we might need to allocate new elements for *this. 02224 void 02225 _M_move_assign1(deque&& __x, /* always equal: */ false_type) 02226 { 02227 constexpr bool __move_storage = 02228 _Alloc_traits::_S_propagate_on_move_assign(); 02229 _M_move_assign2(std::move(__x), __bool_constant<__move_storage>()); 02230 } 02231 02232 // Destroy all elements and deallocate all memory, then replace 02233 // with elements created from __args. 02234 template<typename... _Args> 02235 void 02236 _M_replace_map(_Args&&... __args) 02237 { 02238 // Create new data first, so if allocation fails there are no effects. 02239 deque __newobj(std::forward<_Args>(__args)...); 02240 // Free existing storage using existing allocator. 02241 clear(); 02242 _M_deallocate_node(*begin()._M_node); // one node left after clear() 02243 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 02244 this->_M_impl._M_map = nullptr; 02245 this->_M_impl._M_map_size = 0; 02246 // Take ownership of replacement memory. 02247 this->_M_impl._M_swap_data(__newobj._M_impl); 02248 } 02249 02250 // Do move assignment when the allocator propagates. 02251 void 02252 _M_move_assign2(deque&& __x, /* propagate: */ true_type) 02253 { 02254 // Make a copy of the original allocator state. 02255 auto __alloc = __x._M_get_Tp_allocator(); 02256 // The allocator propagates so storage can be moved from __x, 02257 // leaving __x in a valid empty state with a moved-from allocator. 02258 _M_replace_map(std::move(__x)); 02259 // Move the corresponding allocator state too. 02260 _M_get_Tp_allocator() = std::move(__alloc); 02261 } 02262 02263 // Do move assignment when it may not be possible to move source 02264 // object's memory, resulting in a linear-time operation. 02265 void 02266 _M_move_assign2(deque&& __x, /* propagate: */ false_type) 02267 { 02268 if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator()) 02269 { 02270 // The allocators are equal so storage can be moved from __x, 02271 // leaving __x in a valid empty state with its current allocator. 02272 _M_replace_map(std::move(__x), __x.get_allocator()); 02273 } 02274 else 02275 { 02276 // The rvalue's allocator cannot be moved and is not equal, 02277 // so we need to individually move each element. 02278 _M_assign_aux(std::__make_move_if_noexcept_iterator(__x.begin()), 02279 std::__make_move_if_noexcept_iterator(__x.end()), 02280 std::random_access_iterator_tag()); 02281 __x.clear(); 02282 } 02283 } 02284 #endif 02285 }; 02286 02287 #if __cpp_deduction_guides >= 201606 02288 template<typename _InputIterator, typename _ValT 02289 = typename iterator_traits<_InputIterator>::value_type, 02290 typename _Allocator = allocator<_ValT>, 02291 typename = _RequireInputIter<_InputIterator>, 02292 typename = _RequireAllocator<_Allocator>> 02293 deque(_InputIterator, _InputIterator, _Allocator = _Allocator()) 02294 -> deque<_ValT, _Allocator>; 02295 #endif 02296 02297 /** 02298 * @brief Deque equality comparison. 02299 * @param __x A %deque. 02300 * @param __y A %deque of the same type as @a __x. 02301 * @return True iff the size and elements of the deques are equal. 02302 * 02303 * This is an equivalence relation. It is linear in the size of the 02304 * deques. Deques are considered equivalent if their sizes are equal, 02305 * and if corresponding elements compare equal. 02306 */ 02307 template<typename _Tp, typename _Alloc> 02308 inline bool 02309 operator==(const deque<_Tp, _Alloc>& __x, 02310 const deque<_Tp, _Alloc>& __y) 02311 { return __x.size() == __y.size() 02312 && std::equal(__x.begin(), __x.end(), __y.begin()); } 02313 02314 /** 02315 * @brief Deque ordering relation. 02316 * @param __x A %deque. 02317 * @param __y A %deque of the same type as @a __x. 02318 * @return True iff @a x is lexicographically less than @a __y. 02319 * 02320 * This is a total ordering relation. It is linear in the size of the 02321 * deques. The elements must be comparable with @c <. 02322 * 02323 * See std::lexicographical_compare() for how the determination is made. 02324 */ 02325 template<typename _Tp, typename _Alloc> 02326 inline bool 02327 operator<(const deque<_Tp, _Alloc>& __x, 02328 const deque<_Tp, _Alloc>& __y) 02329 { return std::lexicographical_compare(__x.begin(), __x.end(), 02330 __y.begin(), __y.end()); } 02331 02332 /// Based on operator== 02333 template<typename _Tp, typename _Alloc> 02334 inline bool 02335 operator!=(const deque<_Tp, _Alloc>& __x, 02336 const deque<_Tp, _Alloc>& __y) 02337 { return !(__x == __y); } 02338 02339 /// Based on operator< 02340 template<typename _Tp, typename _Alloc> 02341 inline bool 02342 operator>(const deque<_Tp, _Alloc>& __x, 02343 const deque<_Tp, _Alloc>& __y) 02344 { return __y < __x; } 02345 02346 /// Based on operator< 02347 template<typename _Tp, typename _Alloc> 02348 inline bool 02349 operator<=(const deque<_Tp, _Alloc>& __x, 02350 const deque<_Tp, _Alloc>& __y) 02351 { return !(__y < __x); } 02352 02353 /// Based on operator< 02354 template<typename _Tp, typename _Alloc> 02355 inline bool 02356 operator>=(const deque<_Tp, _Alloc>& __x, 02357 const deque<_Tp, _Alloc>& __y) 02358 { return !(__x < __y); } 02359 02360 /// See std::deque::swap(). 02361 template<typename _Tp, typename _Alloc> 02362 inline void 02363 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) 02364 _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y))) 02365 { __x.swap(__y); } 02366 02367 #undef _GLIBCXX_DEQUE_BUF_SIZE 02368 02369 _GLIBCXX_END_NAMESPACE_CONTAINER 02370 02371 #if __cplusplus >= 201103L 02372 // std::allocator is safe, but it is not the only allocator 02373 // for which this is valid. 02374 template<class _Tp> 02375 struct __is_bitwise_relocatable<_GLIBCXX_STD_C::deque<_Tp>> 02376 : true_type { }; 02377 #endif 02378 02379 _GLIBCXX_END_NAMESPACE_VERSION 02380 } // namespace std 02381 02382 #endif /* _STL_DEQUE_H */